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1. Limites de suites.

1.1. Suites convergentes ou divergentes. On rappelle tout d’abord la définition fondamentale de
la convergence d’une suite :

Soit (un)n∈N une suite de nombres réels. On dit que (un)n∈N converge vers un nombre ` ∈ R si
pour tout ε > 0, il existe un rang N de la suite tel que, si n > N , alors

|un − l| 6 ε.
Dans ce cas on dit que l est la limite de la suite (un)n∈N et on note

` = lim
n→∞

un.

Si une suite admet une limite (réelle), on dit qu’elle est convergente. Dans tous les autres cas,
on dit qu’elle est divergente.

Définition : Suites convergentes.

Autrement dit, une suite converge vers ` si tout intervalle ouvert contenant ` contient tous les termes
de la suite à partir d’un certain rang. De manière encore plus imagée, un est arbitrairement proche de
`, pourvu que n soit suffisamment grand.

Exemple 1.1.1. Vérifier, à l’aide de la définition de la convergence uniquement, que les suites de termes
généraux

un =
1

n
et vn =

n+ 1

n+ 2

convergent respectivement vers 0 et 1.

Remarque 1.1.2. Même si, comme nous venons de le voir, il est possible de montrer qu’une suite
converge avec la définition de la convergence seule, cette méthode n’est jamais utilisée. Nous verrons
dans la suite de ce chapitre des techniques beaucoup plus efficaces pour établir la convergence d’une
suite. La définition de la convergence est utilisée exceptionnellement dans des situations théoriques,
ou pour faire les preuves de certaines propriétés.

Dans le cas des suites divergentes, on distingue encore deux cas : les suites qui divergent vers + ou
−∞ et les autres (qui n’ont donc ni limite finie, ni infinie).

On dit qu’une suite (un)n∈N diverge vers +∞ (respectivement −∞) si pour tout nombre A > 0,
il existe un rang N de la suite pour lequel, si n > N , alors,

un > A (respectivement un 6 −A).

Dans ce cas on note

lim
n→+∞

un = +∞ (respectivement lim
n→+∞

un = −∞).

Définition : Suites divergentes vers ±∞.

La notation lim pour une suite qui diverge vers ±∞ est un peu gênante (mais commode).

Soit (un)n∈N une suite convergente de nombres réels. Alors

� La limite est unique : si lim
n→∞

= `1 et lim
n→∞

= `2, alors nécessairement `1 = `2.

� La suite (un)n∈N est bornée.

� Toute sous-suite extraite de (un)n∈N est également convergente, et de même limite. En
particulier : lim

n→+∞
un+1 = lim

n→+∞
u2n = lim

n→+∞
un.

Proposition : Premières propriétés des suites convergentes.
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Démonstration. À compléter. �

Remarque 1.1.3. Attention, inversement, une suite bornée n’est pas nécessairement convergente, par
exemple ((−1)n)n∈N.

On peut utiliser la propriété des sous-suites sous sa forme contraposée : si on a deux sous-suites
de (un)n∈N qui n’ont pas la même limite alors la suite (un)n∈N ne converge pas.

Méthode : Utiliser les sous-suites pour montrer qu’une suite diverge.

Exemple 1.1.4. La suite (un)n∈N définie par ∀n ∈ N, un = (−1)n est divergente car la suite paire et
la suite impaire extraites n’ont pas les mêmes limites (respectivement 1 et −1).

Exercice 1.1.5. Vrai ou Faux : une suite non bornée diverge vers + ou −∞ ?

La réciproque du troisième point de la proposition précédente est aussi vraie :

Soit (un)n∈N une suite. Si les sous-suites extraites (u2n)n∈N et (u2n+1)n∈N convergent vers la
même limite `, alors (un)n∈N est convergente, de limite `.

Théorème : Sous-suites paire et impaire extraite.

Démonstration. À compléter. �

1.2. Suites géométriques. Regardons tout d’abord le cas des suites (qn)n∈N. Le résultat suivant est
sûrement familier.

Soit q ∈ R.

� Si q > 1 alors lim
n→+∞

qn = +∞.

� Si −1 < q < 1 alors (qn)n∈N converge vers 0.

� Si q < −1 ou q = −1 alors (qn)n∈N n’a pas de limite (donc diverge).

� Si q = 1 alors (qn)n∈N est une suite constante égale à 1 et donc converge vers 1.

Théorème : Limite de qn.

Démonstration. À compléter. �

Pour étudier la limite d’une suite géométrique définie par u0 et un = qnu0, il ne faut pas oublier
de tenir compte du signe de u0 et appliquer les règles sur les opérations concernant les limites
(paragraphe suivant).

Méthode : limite d’une suite géométrique.

1.3. Opérations sur les limites. On peut ajouter ou multiplier termes à termes les éléments de
deux suites. Que se passe-t-il alors pour les limites ?

Si deux suites (un)n∈N et (vn)n∈N sont convergentes, de limites respectives `1 et `2, alors :

� Leur somme (un + vn)n∈N est convergente, de limite `1 + `2 ;

� Leur produit (unvn)n∈N est convergent, de limite `1`2 ;

� Si `2 6= 0, leur quotient
(
un
vn

)
n≥n0

(défini à partir d’un certain rang n0) est convergent,

de limite `1
`2

.

Proposition : Sommes, produits et quotients de limites.
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Démonstration. À compléter. �

Exercice 1.3.1. Dans le dernier cas de la proposition précédente, expliquer pourquoi, si

lim
n→∞

vn = `2 6= 0,

alors vn 6= 0 à partir d’un certain rang (et donc le quotient un
vn

est bien défini).

Il existe des situations qui ne sont pas couvertes par la proposition précédente, on dit qu’on fait
face à une forme indéterminée (F.I.). En effet, on ne peut pas conclure dans les cas suivants :

∞−∞ ∞× 0
`

0

∞
∞

et
0

0
.

En général pour lever les formes indéterminées, il faut trouver le terme dominant, on y reviendra
dans la dernière partie de ce chapitre (qui nous donnera précisément les outils pour repérer les termes
dominants).

1.4. Unicité de la limite et suites récurrentes du type un+1 = f(un). On s’intéresse maintenant
à la limite des suites définies par une relation de récurrence.

Exemple 1.4.1. On définit une suite (un)n∈N par

u0 = 1 et un+1 = u2n + 1.

Le programme Python suivant permet de calculer et d’afficher les n premiers termes de la suite, où n
est un paramètre donné par l’utilisateur.

1 def calculerTermeSuite(n):

2 u=1

3 for index in range (n):

4 u=u**2+1

5 print(u)

Soit f une fonction définie sur un intervalle I. On appelle point fixe de f tout réel x0 solution
de l’équation f(x) = x. Autrement dit :

x0 est un point fixe de f si, et seulement si f(x0) = x0.

Définition : Point fixe.

La plupart du temps, pour déterminer un point fixe d’une fonction, il faudra poser g(x) = f(x)−x
et chercher les solutions de l’équation g(x) = 0. Si l’on ne peut pas résoudre cette équation de
manière algébrique, le théorème de la bijection pourra assurer l’existence d’une unique solution
α, et une valeur approchée pourra être déterminée par dichotomie ou grâce à l’étude d’une suite
récurrente de limite α.

Méthode : recherche d’un point fixe.

Exercice 1.4.2. Montrer que la fonction f définie pour tout réel x par f(x) = e−x possède un unique
point fixe α, et que α ∈ [0, 1].

Le théorème de la bijection montre qu’il existe une solution à l’équation f(x) = x mais ne permet pas
de trouver cette solution. En général c’est impossible explicitement mais on peut utiliser un programme
informatique pour approcher la valeur de cette solution

Exemple 1.4.3. On reprend l’exemple de la fonction précédente et de la recherche de son point fixe α
dans [0, 1]. On cherche une valeur approchée de α avec une précision ε qui est à fixer par l’utilisateur.

On peut alors par exemple procéder de la manière suivante :
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1 import math

2

3 def g(x):

4 return math.exp(-x)-x

5

6

7 def valeurapprochee(epsilon):

8 a = 0

9 b = 1

10 while b-a > epsilon:

11 m = (a+b)/2

12 if g(m) == 0:

13 return m

14 elif g(a)*g(m) > 0:

15 a = m

16 else:

17 b = m

18 return a

19

20

21 solution = valeurapprochee (10**( -3))

22 print(solution)

Cet algorithme utilise la méthode de la dichotomie.

Soit f une fonction définie sur un intervalle I.
On dit que l’intervalle I est stable par f si, et seulement si, pour tout réel x de I, f(x) est

élément de I.
En particulier, l’intervalle [a, b] est stable par f si, et seulement si :

si a 6 x 6 b alors a 6 f(x) 6 b.

Ou encore
min
x∈[a,b]

f(x) > a et max
x∈[a,b]

f(x) 6 b.

Définition : Intervalle stable.

Pour montrer qu’un intervalle [a, b] est stable par f , on pourra :

1. Partir de a 6 x 6 b et effectuer des opérations élémentaires pour arriver à a 6 f(x) 6 b ;

2. Étudier les variations de f sur [a, b] pour trouver ses extremums.

Méthode : Intervalle stable.

Exemple 1.4.4.

1. Soit f(x) =
√

2x+ 4, pour tout x > −2. Montrer que l’intervalle [0, 4] est stable par f .

2. Soit f(x) = x(1− x), pour tout x ∈ R. Montrer que l’intervalle [0, 1] est stable par f .

Soit f une fonction définie sur un intervalle stable I, et (un)n∈N une suite définie par son premier
terme u0 ∈ I et la relation de récurrence :

∀n ∈ N, un+1 = f(un).

Si (un)n∈N converge vers `, et si f est continue en `, alors ` est un point fixe de f :

Théorème : Théorème du point fixe.
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Schématiquement

Si


∀n ∈ N, un+1 = f(un)

lim
n→+∞

un = `

f continue en `

 Alors f(`) = `

Démonstration. À compléter.

�

Remarque 1.4.5. L’intervalle stable I sert à établir que la suite est bien définie : on prouve par
récurrence sur n ∈ N que un ∈ I pour tout n.

Pour montrer qu’un intervalle est stable, on peut se référer à la méthode.

On considère une suite définie par un premier terme u0 et par la relation

un+1 = f(un).

Le théorème du point fixe nous donne des candidats potentiels pour les limites de u. En effet,
si (un)n∈N converge, alors sa limite est forcément l’un des points fixes de f . Le fait de connâıtre
a priori la limite de (un)n∈N peut nous guider. En effet, il est fréquent que l’on démontre que
la suite converge à l’aide du théorème de la limite monotone 3.2. Pour appliquer ce théorème, il
faut montrer que la suite est bornée et le fait de connâıtre la limite potentielle permet de deviner
les bons encadrements (ou la bonne monotonie), puis de les démontrer par récurrence.

Méthode : Limite des suites définies par une relation de récurrence.

Soit la suite u définie par

u0 = 0 et un+1 =
1

5

(
3 + u2n

)
.

On note f la fonction définie sur R par f(x) = 1
5(3 + x2).

1. a. Dresser le tableau de variations de f sur [0, 1] et montrer que [0, 1] est un intervalle
stable par f .

b. Déterminer l’unique point fixe r ∈ [0, 1] de f .

c. Montrer que pour tout x ∈ [0, 1], |f ′(x)| 6 2
5 .

2. a. Montrer que pour tout n > 0, un ∈ [0, 1].

b. Démontrer que pour tout n > 0, |un+1 − r| 6 2
5 |un − r| puis

|un − r| 6
(

2

5

)n
.

c. Trouver explicitement un rang n0 de la suite tel que, pour n > n0, on ait

|un − r| 6 10−10.

d. En déduire une valeur approchée de r à 10−10 près.

Exercice type concours.

2. Limites de suites et inégalités.

2.1. Passage à la limite dans les inégalités. Dans ce paragraphe, on montre que certaines inégalités
entre suites se transmettent à leurs limites. On retiendra que les inégalités larges 6, > passent à la
limite tandis que les inégalités strictes <, > s’affaiblissent à la limite en des inégalités larges. Plus
précisément :



CHAPITRE 1 7

Soit (un)n∈N une suite convergente de limite `.
Si a 6 un 6 b (à partir d’un certain rang), alors a 6 ` 6 b.
En particulier, si un > 0 (à partir d’un certain rang), alors ` > 0.

Théorème : Passage à la limite dans les inégalités larges.

Démonstration. À compléter. �

Soit (un)n∈N et (vn)n∈N deux suites telles que un 6 vn à partir d’un certain rang. Si les suites
(un)n∈N et (vn)n∈N convergent vers ` et `′ alors ` 6 `′.

Corollaire : Comparaison de limites.

Démonstration. À compléter. �

Remarque 2.1.1. Ces résultats sont faux avec des inégalités strictes.
Par exemple, 1

n > 0 pour tout n ∈ N∗, mais ` = lim 1
n = 0 donc ` n’est pas strictement positive !

Également, si un = 2 − 1

n
et vn = 2 +

1

n
, alors on a : un < vn pour tout n > 1, et pourtant

lim
n→+∞

un = 2 = lim
n→+∞

vn.

Soit (un)n∈N et (vn)n∈N deux suites telles que un 6 vn à partir d’un certain rang.

� Si la suite (un)n∈N tend vers +∞ alors (vn)n∈N tend vers +∞.

� Si la suite (vn)n∈N tend vers −∞ alors (un)n∈N tend vers −∞.

Théorème : Théorèmes de minoration

Démonstration. À compléter. �

Remarque 2.1.2. On ne peut rien dire si un 6 vn (pour tout n ∈ N) avec limun = −∞ ou lim vn = +∞.

Par exemple, avec vn = n, on peut prendre successivement un =
1

n
et un = n − 1. L’une de ces

suites tend vers 0, l’autre vers +∞ et pourtant elles sont toutes deux inférieures à vn.

2.2. Encadrements de suites. Le théorème suivant est très souvent utilisé.

Soit (un)n∈N, (vn)n∈N, (wn)n∈N trois suites telles que :

∀n > n0, un 6 vn 6 wn.

Supposons de plus que les suites (un)n∈N et (wn)n∈N convergent vers une même limite `. Alors
la suite (vn)n∈N est convergente, de même limite `.

Théorème : Théorème des gendarmes ou des encadrements.

Démonstration. À compléter. �

Remarque 2.2.1. On ne peut rien dire si (un)n∈N et (wn)n∈N ne convergent pas vers la même limite.

3. Suites monotones et limites

Pour étudier la convergence d’une suite, il est souvent avantageux d’utiliser sa monotonie : c’est
l’une des hypothèses du théorème de la limite monotone, qui permet de montrer qu’une suite converge.

3.1. Suites monotones.

� La suite (un)n∈N est croissante si, et seulement si, pour tout n ∈ N, un 6 un+1.

� La suite (un)n∈N est décroissante si, et seulement si, pour tout n ∈ N, un > un+1.

� Une suite monotone est une suite croissante ou décroissante.

Définition : Suites croissantes, décroissantes.
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� Cas général : on étudie la différence entre deux termes consécutifs un+1 − un et on
détermine si son signe est fixe pour n assez grand :

Si ∀n > n0, un+1 − un > 0 alors (un)n>n0 est croissante
Si ∀n > n0, un+1 − un 6 0 alors (un)n>n0 est décroissante

� Cas des suites à termes positifs : si tous les termes de la suite sont strictement positifs
(à partir d’un certain rang), on compare le quotient de deux termes consécutifs à 1 :

Si ∀n > n0,

{
un > 0
un+1

un
> 1

}
, alors (un)n>n0 croissante

Si ∀n > n0,

{
un > 0
un+1

un
6 1

}
, alors (un)n>n0 décroissante

� Cas des suites définies par une formule de récurrence : on peut établir la monotonie d’une
suite récurrente en étudiant le signe de f(x)− x, ou en prouvant la proposition P(n) par
récurrence.

On pose P(n) : ” un 6 un+1 ” pour montrer qu’elle est croissante, ou P(n) : ” un > un+1

” pour montrer qu’elle est décroissante.

Cette méthode fonctionne très bien pour les suites du type un+1 = f(un) où f est une
fonction croissante.

� Cas des suites définies implicitement : pour les suites (un)n∈N définies par une équation
du type fn(un) = a (avec a réel fixé) ou f(un) = vn (où (vn)n∈N est une suite donnée),
on compare fn(un) avec fn(un+1) puis on utilise la monotonie de fn.

Méthode : Comment déterminer la monotonie d’une suite réelle.

3.2. Suites majorées, minorées, bornées. Le théorème suivant s’utilise souvent, en particulier
dans le cas des suites définies par une relation de récurrence.

� Toute suite croissante et majorée est convergente.

� Toute suite décroissante et minorée est convergente.

Théorème : Théorème de la limite monotone.

Démonstration. La démonstration est hors programme. Dans le premier cas (croissante et majorée), il
s’agirait en effet de montrer que la suite converge vers sa borne supérieure, qui est le plus petit de ses
majorants. Cette notion de borne supérieure n’est pas au programme mais il faut cependant faire bien
attention à la remarque suivante, qui s’inspire de la démonstration. �

Remarque 3.2.1. Pour une suite croissante, le majorant de la suite est un majorant de la limite mais
ce n’est pas nécessairement la limite. Comme expliqué plus haut, la limite est en fait le plus
petit des majorants. Plus concrètement, imaginons qu’on ait réussi à démontrer que la suite (un)n∈N
est (croissante et) majorée par M . On sait alors que la limite est un nombre ` 6 M . Mais, rien ne
nous dit qu’avec un peu de travail supplémentaire, on ne puisse pas trouver une majoration plus fine,
c’est-à-dire, trouver un réel M ′ 6 M tel que, pour tout n, un 6 M ′, ce qui montrerait que la limite
vérifie en fait ` 6M ′ et donc en particulier ` 6= M .

Pour la convergence d’une suite monotone, on distingue deux possibilités : soit elle est bornée et
elle converge, soit elle n’est pas bornée et elle diverge vers l’infini. Précisément :

Méthode : limite d’une suite monotone.
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(un)n∈N majorée par M non majorée
croissante converge vers ` diverge vers +∞

u0 6 ` 6M

(un)n∈N minorée par m non minorée
décroissante converge vers ` diverge vers −∞

m 6 ` 6 u0

Soit u la suite définie, pour n ∈ N par

u0 = 3 et un+1 =
u2n

2un − 1
.

1. Montrer que (un)n∈N est bien définie et que pour tout n ∈ N, un > 1. Puis déterminer la
monotonie de la suite u.

2. Justifier la convergence de la suite u et expliciter sa limite.

Exercice type concours.

On définit, pour tout n ∈ N, la fonction fn par

∀x ∈ R f(x) = xn + 9x2 − 4

1. Montrer que l’équation fn(x) = 0 admet une et une seule solution strictement positive,
qu’on note un.

2. Calculer u1 et u2 puis vérifier que pour tout n ∈ N∗, un ∈
]
0, 23
[
.

3. Monter que pour tout x ∈ ]0, 1[, fn+1(x) < fn(x). Que peut-on en déduire concernant la
suite (un)n∈N ?

4. Montrer que la suite (un)n∈N est convergente, vers une limite que l’on notera `.

5. Déterminer la limite de unn et en déduire la valeur de `.

Exercice type concours.

3.3. Suites adjacentes. Parfois on ne peut pas montrer directement qu’une suite est convergente
mais on peut utiliser une suite auxiliaire qui lui serait adjacente. L’intérêt de cette méthode réside
dans le fait qu’elle permet de montrer qu’une suite converge sans avoir à calculer sa limite.

Deux suites (un)n∈N et (vn)n∈N sont dites adjacentes si et seulement si (un)n∈N est croissante,
(vn)n∈N est décroissante, et lim

n→+∞
vn − un = 0.

Définition : Suites adjacentes.

Pour montrer que deux suites sont adjacentes, on prouve que :

� l’une est croissante ;

� l’autre est décroissante ;

� la différence tend vers zéro.

Méthode : suites adjacentes.

Deux suites adjacentes sont convergentes et de même limite.
Théorème : Suites adjacentes.

Démonstration. À compléter. �

Remarque 3.3.1. Le théorème portant sur les suites adjacentes donne DEUX résultats : la convergence,
puis la limite. Ceci implique qu’un couple de suites adjacentes ne tend pas vers une limite infinie.
L’avantage de ce théorème est qu’on obtient la convergence des deux suites. L’inconvénient est que
l’on a aucune idée de la valeur de la limite commune !
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Soit a et b deux réels tels que 0 < a < b. On définit deux suites u et v par

u0 = a v0 = b un+1 =
2unvn
un + vn

et vn+1 =
un + vn

2
.

1. Montrer que pour tout n, 0 < un < vn puis discuter la monotonie des suites u et v.

2. Montrer que pour tout n, 0 6 vn+1 − un+1 6
vn−un

2 puis

0 6 vn − un 6
v0 − u0

2n
.

3. Déduire des questions précédentes que les deux suites sont convergentes.

4. Montrer que la suite (unvn)n est constante. En déduire la limite commune des suites u et
v.

Exercice type concours.

4. Outils de comparaisons pour les suites.

Si les paragraphes précédents étaient plutôt des rappels de l’an dernier, celui-ci est bien nouveau !
On cherche maintenant à comparer le comportement des suites ”à l’infini”. Par exemple, les deux

suites de termes généraux un = n et vn = n2 sont toutes les deux divergentes. Pourtant, il semble
évident que (vn)n∈N diverge ”plus vite” que (un)n∈N et l’objectif de cette fin de chapitre consiste à se
donner les moyens précis d’exprimer une telle relation.

Dans le même esprit, les deux suites de termes généraux an = n et bn = n + 1 sont aussi toutes
les deux divergentes mais on aimerait croire cette fois qu’elles divergent ”à la même vitesse”, que la
constante 1 ”n’a aucun poids à l’infini”.

Avec le langage que nous allons développer, nous montrerons en effet que (un)n∈N est négligeable
(à l’infini) devant (vn)n∈N et que (an)n∈N et (bn)n∈N sont équivalentes.

Une des applications principales de ces notions de négligeabilité et d’équivalence concerne le calcul
de limite puisqu’elles nous permettent de repérer, dans une expression complexe, la partie qui est
responsable du comportement ”dominant” à l’infini.

4.1. Définitions.

Soit (un)n∈N et (vn)n∈N deux suites, avec vn 6= 0 à partir d’un certain rang. On dit qu’au voisinage
de +∞ :

� (un)n∈N est négligeable devant (vn)n∈N, et on écrit un = o
+∞

(vn) lorsque lim
n→+∞

un
vn

= 0.

On dit : ” un est un petit o de vn”.

� (un)n∈N est équivalente à (vn)n∈N, et on écrit un ∼
+∞

vn, lorsque lim
n→+∞

un
vn

= 1.

Définition : Suites équivalentes ou négligeables.

Remarque 4.1.1. � un = o
+∞

(vn) si et seulement s’il existe une suite (εn) tendant vers 0 telle

que un = εnvn. Dans certains textes, il s’agit en fait de la définition ! Cette manière d’écrire la
negligeabilité permet de se passer de l’hypothèse vn 6= 0.

� Les seules suites équivalentes à 0 sont les suites qui sont nulles à partir d’un certain rang.

� Dans cette définition de négligeabilité, rien n’empêche la suite (vn)n∈N de diverger vers −∞ et
(un)n∈N de diverger vers +∞, de sorte que la suite négligeable peut en fait être supérieure (à
partir d’un certain rang) à la suite dominante.

Exemple 4.1.2. 2 + 2−n ∼
+∞

2 ; 2n3+n2+4n
n4 ∼

+∞
2
n et n5 + 5n7 + 5 = o

+∞

(
n8
)
.

Exercice 4.1.3. Soit (un)n∈N et (vn)n∈N deux suites convergentes vers des limites non nulles. À quelle
condition a-t-on un ∼

n→∞
vn ?
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Exercice 4.1.4. 1. Soit (un)n∈N une suite vérifiant, pour tout n ∈ N,

n2 6 un 6 n
2 + n+ 1.

Déterminer la limite et un équivalent de un.

2. Soit (vn)n∈N une suite vérifiant, pour tout n ∈ N∗,
1

n+ 1
6 vn 6

1

n
.

Déterminer la limite de (nvn)n, en déduire un équivalent de vn et sa limite.

On note (En) l’équation

(En) :
x3

x2 + 1
= n.

1. Montrer que pour tout n ∈ N, l’équation (En) possède une unique solution notée xn, sur
R.

Donner la valeur de u0.

2. Quelle est la monotonie de la suite (xn)n∈N ?

3. Montrer que pour tout n > 1,

n 6 xn 6 n+ 1.

4. En déduire la limite de la suite (xn)n∈N et donner un équivalent.

Exercice type concours.

Pour montrer que deux suites sont équivalentes, on peut montrer que leurs différence est négligeable
devant l’une ou l’autre des suites. Précisément, Soit (un)n∈N et (vn)n∈N deux suites. Alors les
conditions suivantes sont équivalentes.

� un ∼
+∞

vn.

� un − vn = o
+∞

(vn).

� un − vn = o
+∞

(un).

Proposition : Caractérisation de l’équivalence.

Démonstration. À compléter. �

Remarque 4.1.5. � Cela ne veut pas dire que un − vn converge vers 0. Les suites un = n et
vn = n+ 1 forment un contre-exemple.

� Si les deux suites sont nulles à partir d’un certain rang (donc équivalentes), on écrit que

0 = o
n→∞

(0) ...

ce qui est vrai.

4.2. Propriétés.

1. Produit : si un ∼
+∞

vn et rn ∼
+∞

sn alors unrn ∼
+∞

vnsn.

(En particulier, c’est vrai pour rn = sn).

2. Quotient : si un ∼
+∞

vn et rn ∼
+∞

sn (supposées non nulles à partir d’un certain rang),

alors
un
rn
∼
+∞

vn
sn

.

Proposition : Opérations sur les équivalents.
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3. Élévation à une puissance réelle : si un ∼
+∞

vn (avec suites positives à partir d’un

certain rang), alors, pour tout α ∈ R, uαn ∼+∞ v
α
n .

4. Valeur absolue : si un ∼
+∞

vn, alors |un| ∼
+∞
|vn|.

Démonstration. À compléter. �

1. Transitivité : si un ∼
+∞

vn et vn ∼
+∞

wn alors un ∼
+∞

wn.

2. Terme dominant d’une somme : si un = o
+∞

(vn), alors un + vn ∼
+∞

vn. (Dans une

somme, on peut négliger les termes. . . négligeables !)

3. Passage à l’inverse : si un = o
+∞

(vn) et si les suites un et vn sont non nulles à partir

d’un certain rang, alors : 1
vn

= o
+∞

(
1
un

)
.

Proposition : Propriétés des relations o () et ∼ .

Démonstration. À compléter. �

Remarque 4.2.1. Un cas particulier important du deuxième point de la proposition précédente affirme
que les polynômes sont équivalents à leur monôme de plus haut degré. Soit en effet (pn)n la suite
définie par

pn = aNn
N + aN−1n

N−1 + · · ·+ a1n+ a0.

Alors, pour tout k < N ,

akn
k = o

n→∞

(
aNn

N
)

puisque lim
n→∞

akn
k

aNnN = lim
n→∞

ak
aN
nk−N = 0. En appliquant la proposition, on conclut que pn ∼

n→∞
aNn

N .

Avec le deuxième point de la proposition 4.2, on en déduit un résultat analogue pour les fractions
rationnelles (i.e les quotients de polynômes) : elles sont équivalentes au quotient des monômes de plus
hauts degrés.

On considère des suites non nulles à partir d’un certain rang. On a alors :

1. un = o
+∞

(1) si et seulement si lim
n→∞

un = 0.

2. Soit ` 6= 0. Alors un ∼
+∞

` si et seulement si lim
n→∞

un
` = 1 si et seulement si lim

n→∞
un = `.

Proposition : Équivalents et limites.

Démonstration. À compléter. �

Remarque 4.2.2. Les fautes de raisonnement arrivent très vite avec les équivalents. Ce qu’il faut retenir
principalement de cette proposition est qu’on peut multiplier ou diviser des équivalents mais surtout
pas additionner (ou soustraire) les équivalents, ni les composer !

� Si un = n + 1
n , vn = −n + 1. On a un ∼

+∞
n, vn ∼

+∞
−n et un + vn = 1 + 1

n ∼+∞ 1 alors que

n+ (−n) = 0. En fait, le problème n’est même pas résolu si on considère uniquement des suites
non nulles à partir d’un certain rang : en effet n + 1 ∼

+∞
n + 2 et d’autre part −n ∼

+∞
−n. Si

on ajoute ces deux équivalences, on obtient 1 ∼
+∞

2, ce qui, bien sûr, est faux. Aucune de ces 6

suites n’est nulle à partir d’un certain rang.

� Si un ∼
+∞

vn cela n’implique pas ln(un) ∼
+∞

ln(vn). Par exemple, si un = 1 et vn = 1 + 1
n (en

utilisant le théorème 4.5).
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� De même, si un ∼
+∞

vn cela n’implique pas eun ∼
+∞

evn . Par exemple, si un = n et vn = n+ 1.

Exercice 4.2.3. Montrer que eun ∼
+∞

evn si et seulement si lim
n→∞

(un − vn) = 0. En particulier, il est vrai

que si eun ∼
+∞

evn , alors un ∼
+∞

vn ; c’est la réciproque qui est fausse.

4.3. Applications.

Si un ∼
+∞

vn, alors les suites (un)n∈N et (vn)n∈N sont de même nature, c’est-à-dire :

� (un)n∈N converge si, et seulement si, (vn)n∈N converge et dans ce cas elles ont la même
limite.

� (un)n∈N diverge vers +∞ si, et seulement si, (vn)n∈N diverge vers +∞ (idem pour −∞).

� (un)n∈N n’a pas de limite si, et seulement si, (vn)n∈N n’a pas de limite.

Théorème : Utilisation de la relation d’équivalence.

Démonstration. À compléter. �

Si un = o
+∞

(vn) et :

� si la suite (vn)n∈N tend vers 0, alors la suite (un)n∈N tend vers 0.

� si lim
n→+∞

|un| = +∞ alors lim
n→+∞

|vn| = +∞.

Théorème : Utilisation de la relation de négligeabilité.

Démonstration. À compléter. �

4.4. Croissances comparées. Les théorèmes de croissances comparées sont des résultats qui per-
mettent de lever des indéterminations.

� ”Le logarithme est négligeable devant les puissances” :

ln(n) = o
+∞

(n) ou, plus généralement : ∀α > 0, ∀β > 0, (ln(n))α = o
+∞

(
nβ
)

� ”Les puissances sont négligeables devant l’exponentielle” :

n = o
+∞

(en) ou, plus généralement : ∀α > 0, ∀β > 0, nα = o
+∞

(
eβn
)

� ”L’exponentielle est négligeable devant la factorielle” :

en = o
+∞

(n!) ou, plus généralement : ∀q > 0, qn = o
+∞

(n!)

Théorème : Croissances comparées.

Démonstration. Il s’agit en principe d’une reformulation de résultats déjà connus. �

Quand la croissance comparée n’est pas directe, il faut revenir à une forme exponentielle pour
utiliser l’une des formules ci-dessus.

Méthode : croissances comparées.

Exemple 4.4.1. Quelle est la limite de n2 × 2−n ?

4.5. Formes indéterminées.

1. Formes indéterminées du type ∞−∞.

Pour lever une telle indétermination, on cherche le terme de la somme qui est dominant
en +∞, ce qui ramène la limite à trouver à celle d’une expression plus simple. On peut

Méthode : pour lever les indéterminations.
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retenir que les polynômes sont équivalents en +∞ à leur monôme de plus haut de degré
(voir remarque 4.2.1).

2. Formes indéterminées du type
∞
∞

.

On cherche le terme dominant du numérateur et le terme dominant du dénominateur.
La limite à trouver se ramène à celle du quotient de ces deux termes dominants. On
peut retenir que les fractions rationnelles sont équivalentes en +∞ au quotient de leurs
monômes de plus hauts degrés (en s’inspirant de la remarque 4.2.1).

3. Formes indéterminées du type 0
0 .

La démarche est identique : on ne retient du numérateur et du dénominateur que les
termes dominants. Attention cependant, dans ce cas, les termes dominants sont ceux qui
tendent le plus lentement vers 0.

Exemple 4.5.1.

1. en − n2 ∼
+∞

en car n2 = o
+∞

(en) par croissances comparées, donc :

lim
n→+∞

en − n2 = lim
n→+∞

en = +∞.

2.
en − n2

3n − ln(n)10
∼
+∞

en

3n
car n2 = o

+∞
(en) par croissances comparées, et ln(n)10 = o

+∞
(3n) par

croissances comparées, et on fait le quotient des équivalents. Ensuite :

lim
n→+∞

en − n2

3n − ln(n)10
= lim

n→+∞

en

3n
= lim

n→+∞

(e
3

)n
= 0

car −1 < e
3 < 1.

3. 1+2−n

1√
n
− 1

ln(n)

∼
+∞

1
−1

ln(n)

∼
+∞
− ln(n) car limn→+∞ 2−n = limn→+∞

(
1
2

)n
= 0 donc 2−n = o

+∞
(1), et :

ln(n) = o
+∞

(
√
n) par croissances comparées, donc 1√

n
= o

+∞

(
1

ln(n)

)
, et on fait le quotient des

équivalents. Ensuite :

lim
n→+∞

1 + 2−n

1√
n
− 1

ln(n)

= lim
n→+∞

− ln(n) = −∞.

On dispose d’équivalents particuliers pour lever des formes indéterminées spécifiques :

Soit (un)n∈N une suite de limite nulle . Alors :

∀α ∈ R∗, (1 + un)α − 1 ∼
+∞

αun

ln(1 + un) ∼
+∞

un

eun − 1 ∼
+∞

un

Proposition : Équivalents particuliers.

Démonstration. On verra la démonstration de ces résultats plus tard dans le cours, à l’aide de la formule
de Taylor. �

Remarque 4.5.2. C’est faux si la suite (un)n∈N ne tend pas vers 0.
Par exemple : ln(1 + n) n’est pas équivalent à n au voisinage de +∞, car :

ln(1 + n)

n
=

ln
(
n
(
1 + 1

n

))
n

=
ln(n)

n
+

ln
(
1 + 1

n

)
n

→n→+∞ 0
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en utilisant lim
n→∞

ln(n)

n
= 0 par croissances comparées et lim

n→∞

ln
(
1 + 1

n

)
n

= 0 puisque lim
n→∞

ln
(
1 + 1

n

)
=

0.
On a donc : ln(1 + n) = o

+∞
(n).

Exemple 4.5.3. Donner un équivalent puis la limite de :

1. xn = 2n(
√

1 + e−n − 1).

2. yn = (n+ 1) ln
(
n+1
n

)
.

3. zn = n(e
2
n − 1).

Exercice 4.5.4.

1. n ∼
n→+∞

n+ 1.

2. n2 ∼
n→+∞

n2 + n.

3. ln(n) ∼
n→+∞

ln(100000000n).

4. en ∼
n→+∞

en+
1

100000000 .

5. en ∼
n→+∞

e2n.

6. ln(n) ∼
n→+∞

ln(n+ 1).

Exercice 4.5.5.

1. un = −2n2 + 7n+ 3.

2. un = n− 3
n5 .

3. un = 3n2+2n−5
−4n2+3n−8 .

4. un = (1.1)n − n92 + e−n.

5. un =
(
3
4

)n −√n.

6. un =
(
3
4

)n ×√n.

7. un = 3n2+2n−5n
ln(n)−4n2+3n−8 .

8. un =
√

2n+ 1 +
√

2n.

9. un =
√

2n+ 1−
√

2n.

10. un = n ln
(
1 + 2

n

)
.

5. Sujets d’annales en lien avec ce chapitre.

Remarque 5.0.1. 1. Nous traiterons certains des sujets suivants en exercices, en travaux dirigés,
en colles ou en devoir. Pour les autres, il existe des corrigés que l’on trouve facilement sur
Internet. Ces corrigés sont parfois très rapides, n’hésitez pas à venir m’en parler si vous pensez
qu’une question mérite des explications supplémentaires.

2. Les sujets de concours sont souvent pensés pour faire appel à plusieurs parties du programme.
Dans la liste qui suit figurent les exercices pour lequel il est nécessaire de connâıtre les résultats
de ce chapitre. Mais parfois ce n’est pas suffisant car d’autres parties du cours sont aussi
impliquées. J’indique ces situations avec le symbole ? si l’exercice ne peut être traité avec les
connaissances de ce chapitre uniquement.

3. Cette liste n’est pas exhaustive.

1. ECRICOME

� 1995 Exercice 2.

� 1996 Exercice 1.

� 1999 Exercice 1 ?.

� 2001 Exercice 2 ?.

� 2003 Exercice 2.

� 2004 Exercice 1.

� 2005 Exercice 1 ?.

� 2007 Exercice 1 ?.

� 2008 Exercice 2 ?.

� 2010 Exercice 2 ?.
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� 2012 Exercice 2 ?.

� 2014 Exercice 2.

� 2015 Exercice 1 ?.

� 2020 Exercice 2 (la fin).

� 2021 Exercice 2 ?.

� 2022 Exercice 2.

� 2023 (sujet 0) Exercice 2 et Exercice 3.

2. EDHEC

� 1997 Exercice 1.

� 2000 Exercice 3.

� 2002 Exercice 3.

� 2003 Exercice 3.

� 2004 Problème ?.

� 2008 Exercice 1.

� 2009 Exercice 1.

� 2012 Exercice 1.

� 2016 Exercice 2.

� 2017 Exercice 2 ?.

� 2020 Problème ?.

� 2022 Exercice 3.

3. EML

� 2001 Exercice 2 ?.

� 2002 Exercice 2.

� 2004 Exercice 1.

� 2005 Exercice 2 ?.

� 2006 Exercice 2 ?.

� 2007 Exercice 2 ?.

� 2009 Exercice 1 ?.

� 2010 Exercice 2 ? (le début est faisable dès maintenant).

� 2011 Exercice 1 ? (le début est faisable dès maintenant).

� 2016 Exercice 2 ?.

� 2017 Exercice 1 ?.

� 2018 Exercice 2 ?.

� 2019 Exercice 3 (la suite n’est pas vraiment une suite récurrente).

� 2024 Exercice 1 dernière partie.

4. ESCP

� 1988 épreuve III Exercice 1 ?.

� 1989 épreuve III Exercice 2.

� 1990 épreuve III Exercice 2.

� 1992 épreuve III Exercice 2.
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� 1994 épreuve III Exercice 1 (la suite n’est pas vraiment une suite récurrente, voir la dernière
partie de M01).

� 1996 épreuve III Exercice 2.

� 1997 épreuve III Exercice 2.

� 1999 épreuve III Exercice 2.

� 2000 épreuve III Exercice 2 ?.

5. ESC

� 2006 Exercice 2.

� 2007 Exercice 2.

� 2009 Exercice 2 ?.

6. ESSEC

� 1986 épreuve II Partie I ?.

� 1989 épreuve I Partie I ?.

� 1989 épreuve II Partie II ? (très peu).

� 1990 épreuve III Exercice 1 (suite récurrente d’ordre 3 mais sans algèbre linéaire).

� 1993 épreuve II Partie I (suite récurrente d’ordre supérieur sans algèbre linéaire ; d’ailleurs
la suite est affine).

� 1995 épreuve I Exercice 2. 1997 épreuve III Problème 2 ?.

� 2000 épreuve III Exercice 2 ? (les fonctions trigonométriques qui apparaissent dans cet
exercice sont maintenant hors programme).

� 2002 épreuve II Partie I, Partie II et Partie III ?.

7. HEC Les sujets récents sont très marqués par les probabilités et (plus épisodiquement) l’algèbre
linéaire. Si certaines suites numériques apparaissent de temps en temps, leurs études ne consti-
tuent jamais le but d’un problème.

Remarque 5.0.2. Les suites récurrentes linéaires d’ordre supérieur (définie par exemple par ses premiers
termes et par un+2 = un+1 + 2un seront étudiées dans le cours sur les applications linéaires.
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