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CHAPITRE 1 2

1. LIMITES DE SUITES.

1.1. Suites convergentes ou divergentes. On rappelle tout d’abord la définition fondamentale de
la convergence d’une suite :

Soit (up)nen une suite de nombres réels. On dit que (uy,)nen converge vers un nombre ¢ € R si
pour tout € > 0, il existe un rang N de la suite tel que, si n > N, alors

lup, — 1| < e.
Dans ce cas on dit que [ est la limite de la suite (u,)nen et on note

¢ = lim u,.
n—oo

Si une suite admet une limite (réelle), on dit qu’elle est convergente. Dans tous les autres cas,
on dit qu’elle est divergente.

Autrement dit, une suite converge vers £ si tout intervalle ouvert contenant ¢ contient tous les termes
de la suite a partir d’un certain rang. De maniére encore plus imagée, u,, est arbitrairement proche de
£, pourvu que n soit suffisamment grand.

Ezemple 1.1.1. Vérifier, a ’aide de la définition de la convergence uniquement, que les suites de termes
généraux
1 n+1

Up, = — et v, =
" " 42

convergent respectivement vers 0 et 1.

Remarque 1.1.2. Méme si, comme nous venons de le voir, il est possible de montrer qu’une suite
converge avec la définition de la convergence seule, cette méthode n’est jamais utilisée. Nous verrons
dans la suite de ce chapitre des techniques beaucoup plus efficaces pour établir la convergence d’une
suite. La définition de la convergence est utilisée exceptionnellement dans des situations théoriques,
ou pour faire les preuves de certaines propriétés.

Dans le cas des suites divergentes, on distingue encore deux cas : les suites qui divergent vers + ou
—o00 et les autres (qui n’ont donc ni limite finie, ni infinie).

On dit qu’une suite (uy)nen diverge vers +oo (respectivement —oo) si pour tout nombre A > 0,
il existe un rang N de la suite pour lequel, si n > N, alors,

u, =2 A (respectivement u, < —A).
Dans ce cas on note

lim w, = 400 (respectivement  lim wu, = —o0).
n—-+4oo n——+4o0o

La notation lim pour une suite qui diverge vers +0o est un peu génante (mais commode).

Proposition : Premiéres propriétés des suites convergentes.
Soit (un)nen une suite convergente de nombres réels. Alors

e La limite est unique : si lim = /1 et lim = /5, alors nécessairement {1 = /.
n—oo n—oo

e La suite (up)nen est bornée.

e Toute sous-suite extraite de (uy)nen est également convergente, et de méme limite. En

articulier : lim wu = lim w9, = lim wu,.
b n—-4o0 o n—4o0o 2T n—-4o00 "
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Démonstration. A compléter. O

Remarque 1.1.3. Attention, inversement, une suite bornée n’est pas nécessairement convergente, par
exemple ((—=1)"), cn-

Méthode : Utiliser les sous-suites pour montrer qu’une suite diverge.
On peut utiliser la propriété des sous-suites sous sa forme contraposée : si on a deux sous-suites
de (un)nen qui n’ont pas la méme limite alors la suite (uy,)nen ne converge pas.

Ezemple 1.1.4. La suite (uy,)pen définie par Vn € N;  u, = (—1)" est divergente car la suite paire et
la suite impaire extraites n’ont pas les mémes limites (respectivement 1 et —1).

Ezercice 1.1.5. Vrai ou Faux : une suite non bornée diverge vers 4+ ou —oo ?

La réciproque du troisieme point de la proposition précédente est aussi vraie :

Théoréme : Sous-suites paire et impaire extraite.

Soit (un)nen une suite. Si les sous-suites extraites (uop)nen €t (U2n+1)nen convergent vers la
méme limite ¢, alors (u,)nen est convergente, de limite /.

Démonstration. A compléter. O

1.2. Suites géométriques. Regardons tout d’abord le cas des suites (¢")nen. Le résultat suivant est
stirement familier.

Théoreme : Limite de ¢".
Soit ¢ € R.

e Sig>1alors lim ¢" = 4o0.

n—+00
e Si —1 < ¢ <1 alors (¢")nen converge vers 0.

e Sig< —1ouqg=—1 alors (¢")nen n'a pas de limite (donc diverge).

e Si g =1 alors (¢")nen est une suite constante égale a 1 et donc converge vers 1.

Démonstration. A compléter. O

Méthode : limite d’une suite géométrique.
Pour étudier la limite d’une suite géométrique définie par ug et u, = q"ug, il ne faut pas oublier
de tenir compte du signe de ug et appliquer les regles sur les opérations concernant les limites
(paragraphe suivant).

1.3. Opérations sur les limites. On peut ajouter ou multiplier termes & termes les éléments de
deux suites. Que se passe-t-il alors pour les limites ?

Proposition : Sommes, produits et quotients de limites.
Si deux suites (un)nen et (vn)nen sont convergentes, de limites respectives ¢; et o, alors :

e Leur somme (u, + vy )nen €st convergente, de limite ¢1 + £3;

e Leur produit (u,v,)nen est convergent, de limite ¢34 ;

n

e Si /9 # 0, leur quotient (Z—") N (défini & partir d’un certain rang ng) est convergent,
n>ng

de limite 5—.
2
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Démonstration. A compléter. O
Ezercice 1.3.1. Dans le dernier cas de la proposition précédente, expliquer pourquoi, si
lim v, = fs # 0,
n—oo
alors vy, # 0 & partir d’un certain rang (et donc le quotient o2 est bien défini).

Il existe des situations qui ne sont pas couvertes par la proposition précédente, on dit qu’on fait
face & une forme indéterminée (F.I.). En effet, on ne peut pas conclure dans les cas suivants :

I o0 0

00 — 00 oo x 0 = — et —.

0 00 0
En général pour lever les formes indéterminées, il faut trouver le terme dominant, on y reviendra
dans la derniére partie de ce chapitre (qui nous donnera précisément les outils pour repérer les termes

dominants).

1.4. Unicité de la limite et suites récurrentes du type u,11 = f(u,). On s’intéresse maintenant
a la limite des suites définies par une relation de récurrence.

Ezemple 1.4.1. On définit une suite (uy,)nen par
up=1 et unﬂzui—i—l.

Le programme Python suivant permet de calculer et d’afficher les n premiers termes de la suite, ou n
est un parametre donné par 'utilisateur.

1 calculerTermeSuite(n):

2 u=1

3 index (n):
4 u=u*x*2+1

5 (uw)

Soit f une fonction définie sur un intervalle I. On appelle point fixe de f tout réel xq solution
de ’équation f(z) = x. Autrement dit :

xo est un point fixe de f si, et seulement si f(z¢) = xo.

Méthode : recherche d’un point fixe.
La plupart du temps, pour déterminer un point fixe d’une fonction, il faudra poser g(z) = f(z)—=x
et chercher les solutions de 1’équation g(x) = 0. Si l'on ne peut pas résoudre cette équation de
maniere algébrique, le théoreme de la bijection pourra assurer ’existence d’une unique solution
«, et une valeur approchée pourra étre déterminée par dichotomie ou grace a ’étude d’une suite
récurrente de limite a.

Ezxercice 1.4.2. Montrer que la fonction f définie pour tout réel x par f(x) = e™* posséde un unique
point fixe «, et que a € [0, 1].

Le théoréme de la bijection montre qu’il existe une solution & I'équation f(z) = x mais ne permet pas
de trouver cette solution. En général c’est impossible explicitement mais on peut utiliser un programme
informatique pour approcher la valeur de cette solution

Ezxemple 1.4.3. On reprend I'exemple de la fonction précédente et de la recherche de son point fixe «
dans [0, 1]. On cherche une valeur approchée de « avec une précision € qui est a fixer par 1'utilisateur.
On peut alors par exemple procéder de la maniere suivante :
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ot

import math

def g(x):
return math.exp(-x)-x

valeurapprochee (epsilon):
a 0
b 1
while b-a > epsilon:
m = (a+b)/2

if g(m) ==
return m
elif g(a)*g(m) > O:

return a

solution = valeurapprochee (10**(-3))
print (solution)

Cet algorithme utilise la méthode de la dichotomie.

Soit f une fonction définie sur un intervalle I.

On dit que l'intervalle I est stable par f si, et seulement si, pour tout réel x de I, f(z) est
élément de I.

En particulier, I'intervalle [a, b] est stable par f si, et seulement si :

sia<z<b alors a< f(z) <b.

Ou encore

min f(z) >a et max f(z)<b.
z€[a,b] z€la,b]

Méthode : Intervalle stable.
Pour montrer qu’un intervalle [a, b] est stable par f, on pourra :

1. Partir de a < = < b et effectuer des opérations élémentaires pour arriver a a < f(z) < b;

2. Etudier les variations de f sur [a, b] pour trouver ses extremums.

Ezemple 1.4.4.

1. Soit f(z) =+/2x + 4, pour tout z > —2. Montrer que l'intervalle [0, 4] est stable par f.
2. Soit f(x) = z(1 — z), pour tout = € R. Montrer que I'intervalle [0, 1] est stable par f.

Théoreme : Théoréeme du point fixe.
Soit f une fonction définie sur un intervalle stable I, et (uy,)nen une suite définie par son premier
terme ug € I et la relation de récurrence :

VneN, upi1= f(un)

Si (un)nen converge vers £, et si f est continue en ¢, alors £ est un point fixe de f :
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Schématiquement
VneN, upi1 = f(un)
Si nggloo Up =L Alors f(¢) =¢

f continue en £

Démonstration. A compléter.
d

Remarque 1.4.5. L’intervalle stable I sert a établir que la suite est bien définie : on prouve par
récurrence sur n € N que u,, € I pour tout n.

Pour montrer qu'un intervalle est stable, on peut se référer a la méthode.

Méthode : Limite des suites définies par une relation de récurrence.
On considere une suite définie par un premier terme wug et par la relation

Unt1 = f(un).

Le théoréme du point fixe nous donne des candidats potentiels pour les limites de u. En effet,
si (up)nen converge, alors sa limite est forcément 1'un des points fixes de f. Le fait de connaitre
a priori la limite de (uy)nen peut nous guider. En effet, il est fréquent que 'on démontre que
la suite converge a l’aide du théoreme de la limite monotone 3.2. Pour appliquer ce théoreme, il
faut montrer que la suite est bornée et le fait de connaitre la limite potentielle permet de deviner
les bons encadrements (ou la bonne monotonie), puis de les démontrer par récurrence.

Exercice type concours.
Soit la suite u définie par
1

On note f la fonction définie sur R par f(z) = £(3 + 2?).

up =0 et Up+1 =

1. a. Dresser le tableau de variations de f sur [0, 1] et montrer que [0, 1] est un intervalle
stable par f.

Déterminer I'unique point fixe r € [0, 1] de f.
Montrer que pour tout z € [0,1], | f/(z)| < 2.
Montrer que pour tout n > 0, u, € [0,1].

e
S T

Démontrer que pour tout n > 0, |upt1 — | < 2 |u, — 7| puis

2 n
lun, — 7] < <5> .

c. Trouver explicitement un rang ng de la suite tel que, pour n > ng, on ait

|un, — 7| < 10710

d. En déduire une valeur approchée de r & 10710 pres.

2. LIMITES DE SUITES ET INEGALITES.

2.1. Passage a la limite dans les inégalités. Dans ce paragraphe, on montre que certaines inégalités
entre suites se transmettent a leurs limites. On retiendra que les inégalités larges <, > passent a la
limite tandis que les inégalités strictes <, > s’affaiblissent a la limite en des inégalités larges. Plus
précisément :



CHAPITRE 1 7

Théoreme : Passage a la limite dans les inégalités larges.
Soit (up)nen une suite convergente de limite /.
Si a < u, < b (& partir d'un certain rang), alors a < ¢ < b.
En particulier, si u,, > 0 (& partir d’un certain rang), alors ¢ > 0.

Démonstration. A compléter. a

Corollaire : Comparaison de limites.
Soit (un)nen et (vn)nen deux suites telles que wu,, < v, a partir d’un certain rang. Si les suites
(Un)nen €t (vn)nen convergent vers £ et ¢ alors £ < /.

Démonstration. A compléter. O

Remarque 2.1.1. Ces résultats sont faux avec des inégalités strictes.
Par exemple, % > (0 pour tout n € N*, mais ¢ = lim% = 0 donc ¢ n’est pas strictement positive !

, 1 1

Egalement, si u, = 2 — — et v, = 2+ —, alors on a : u, < v, pour tout n > 1, et pourtant

n n
lim u, =2= lim wv,.

n—-+o0o n—-4o00

Théoreme : Théoréemes de minoration
Soit (tn)nen €t (vn)nen deux suites telles que u, < vy, & partir d’'un certain rang.
e Si la suite (up)nen tend vers oo alors (vp)nen tend vers 4o00.
)

e Si la suite (v,)nen tend vers —oo alors (up)nen tend vers —oo.

Démonstration. A compléter. O
Remarque 2.1.2. On ne peut rien dire si u,, < v, (pour tout n € N) avec limu,, = —oo ou lim v, = 400.
Par exemple, avec v, = n, on peut prendre successivement u, = — et u,, = n — 1. L’une de ces

n
suites tend vers 0, 'autre vers +o0o et pourtant elles sont toutes deux inférieures a v,,.

2.2. Encadrements de suites. Le théoréme suivant est trés souvent utilisé.

Théoreme : Théoreme des gendarmes ou des encadrements.
Soit (un)neN, (Un)neN, (Wn)nen trois suites telles que :

Vn = no, Up < Up < Wp-

Supposons de plus que les suites (uy)nen €t (wy)nen convergent vers une méme limite £. Alors
la suite (v, )nen est convergente, de méme limite £.

Démonstration. A compléter. d

Remarque 2.2.1. On ne peut rien dire si (un)nen et (wy)nen ne convergent pas vers la méme limite.

3. SUITES MONOTONES ET LIMITES

Pour étudier la convergence d’une suite, il est souvent avantageux d’utiliser sa monotonie : c’est
I’'une des hypotheses du théoreme de la limite monotone, qui permet de montrer qu’une suite converge.

3.1. Suites monotones.

e La suite (u,)nen est croissante si, et seulement si, pour tout n € N, u,, < tpy.

e La suite (u,)nen est décroissante si, et seulement si, pour tout n € N, uy, = wy41.

e Une suite monotone est une suite croissante ou décroissante.
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Méthode : Comment déterminer la monotonie d’une suite réelle.
e Cas général : on étudie la différence entre deux termes consécutifs u,+1 — u, et on
détermine si son signe est fixe pour n assez grand :

SiVn > mng, Upt1 — un = 0 alors (uy)n>n, €st croissante
SiVn = ng, Upt1 — un < 0 alors (up)n>n, est décroissante

e Cas des suites a termes positifs : si tous les termes de la suite sont strictement positifs
(a partir d’un certain rang), on compare le quotient de deux termes consécutifs a 1 :

Uy >0
Si Vn >ng Un+1 alors (un)n>n, croissante
’ ——>1( Zno
U
Up >0
Si Vn > ng Un+1 alors (un )p>n, décroissante
) < 1 Y )
~
Un

o Cas des suites définies par une formule de récurrence : on peut établir la monotonie d’une
suite récurrente en étudiant le signe de f(z) — x, ou en prouvant la proposition P(n) par
récurrence.

On pose P(n) : 7 u, < upy1 ” pour montrer qu’elle est croissante, ou P(n) : 7wy > Upt1
” pour montrer qu’elle est décroissante.

Cette méthode fonctionne tres bien pour les suites du type up+1 = f(uy) ou f est une
fonction croissante.

e Cas des suites définies implicitement : pour les suites (u,)nen définies par une équation
du type fn(u,) = a (avec a réel fixé) ou f(u,) = v, (out (vy)nen est une suite donnée),
on compare fp,(uy) avec f,(u,+1) puis on utilise la monotonie de f,.

3.2. Suites majorées, minorées, bornées. Le théoreme suivant s’utilise souvent, en particulier
dans le cas des suites définies par une relation de récurrence.

Théoreme : Théoreme de la limite monotone.

e Toute suite croissante et majorée est convergente.

e Toute suite décroissante et minorée est convergente.

Démonstration. La démonstration est hors programme. Dans le premier cas (croissante et majorée), il
s’agirait en effet de montrer que la suite converge vers sa borne supérieure, qui est le plus petit de ses
majorants. Cette notion de borne supérieure n’est pas au programme mais il faut cependant faire bien
attention a la remarque suivante, qui s’inspire de la démonstration. O

Remarque 3.2.1. Pour une suite croissante, le majorant de la suite est un majorant de la limite mais
ce n’est pas nécessairement la limite. Comme expliqué plus haut, la limite est en fait le plus
petit des majorants. Plus concrétement, imaginons qu’on ait réussi & démontrer que la suite (uy, )pen
est (croissante et) majorée par M. On sait alors que la limite est un nombre ¢ < M. Mais, rien ne
nous dit qu’avec un peu de travail supplémentaire, on ne puisse pas trouver une majoration plus fine,
c’est-a-dire, trouver un réel M’ < M tel que, pour tout n, u, < M’, ce qui montrerait que la limite
vérifie en fait £ < M’ et donc en particulier £ # M.

Méthode : limite d’une suite monotone.
Pour la convergence d’une suite monotone, on distingue deux possibilités : soit elle est bornée et
elle converge, soit elle n’est pas bornée et elle diverge vers 'infini. Précisément :
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(Un )neN majorée par M non majorée
croissante converge vers { diverge vers +00
uQ g 14 < M
(Un)neN minorée par m non minorée
décroissante converge vers £ diverge vers —oo
m < £ < ug

Exercice type concours.
Soit u la suite définie, pour n € N par

2
Un,

2uy, —1°
1. Montrer que (up)nen est bien définie et que pour tout n € N, u,, > 1. Puis déterminer la
monotonie de la suite u.

Uy = 3 et  uUpt1 =

2. Justifier la convergence de la suite u et expliciter sa limite.

Exercice type concours.
On définit, pour tout n € N, la fonction f, par

VzeR f(z)=2z"+922 —4
1. Montrer que I’équation f,(x) = 0 admet une et une seule solution strictement positive,
qu’on note uy,.
2. Calculer u; et ug puis vérifier que pour tout n € N*, u, € ]0, % [

3. Monter que pour tout z € |0, 1[, fnt1(x) < fn(z). Que peut-on en déduire concernant la
suite (up)pen ?

4. Montrer que la suite (u,)pen est convergente, vers une limite que ’on notera /.

5. Déterminer la limite de u; et en déduire la valeur de 4.

3.3. Suites adjacentes. Parfois on ne peut pas montrer directement qu’une suite est convergente
mais on peut utiliser une suite auxiliaire qui lui serait adjacente. L’'intérét de cette méthode réside
dans le fait qu’elle permet de montrer qu’'une suite converge sans avoir a calculer sa limite.

Deux suites (un)nen €t (vn)nen sont dites adjacentes si et seulement si (uy,)nen est croissante,

(vn)nen est décroissante, et lim v, — u, = 0.
n—-+o0o

Méthode : suites adjacentes.
Pour montrer que deux suites sont adjacentes, on prouve que :

e l'une est croissante;
e l'autre est décroissante ;

e la différence tend vers zéro.

Théoreme : Suites adjacentes.
| Deux suites adjacentes sont convergentes et de méme limite.

Démonstration. A compléter. O

Remarque 3.3.1. Le théoreme portant sur les suites adjacentes donne DEUX résultats : la convergence,
puis la limite. Ceci implique qu’un couple de suites adjacentes ne tend pas vers une limite infinie.
L’avantage de ce théoreme est qu’on obtient la convergence des deux suites. L’inconvénient est que
I’on a aucune idée de la valeur de la limite commune !
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Exercice type concours.
Soit a et b deux réels tels que 0 < a < b. On définit deux suites u et v par

2Up Uy, Uy, + Up,
up=a v=b upp1=—— e vpy=——.
Up, + Uy, 2
1. Montrer que pour tout n, 0 < u, < v, puis discuter la monotonie des suites u et v.

2. Montrer que pour tout n, 0 < V41 — Upt1 < “25~" puis

Vo — U
n
3. Déduire des questions précédentes que les deux suites sont convergentes.

0<vn—uy <

4. Montrer que la suite (u,vy,), est constante. En déduire la limite commune des suites u et
.

4. OUTILS DE COMPARAISONS POUR LES SUITES.

Si les paragraphes précédents étaient plutét des rappels de ’an dernier, celui-ci est bien nouveau!

On cherche maintenant a comparer le comportement des suites ”a l'infini”. Par exemple, les deux
suites de termes généraux u, = n et v, = n’ sont toutes les deux divergentes. Pourtant, il semble
évident que (v,)nen diverge "plus vite” que (u,)nen et I'objectif de cette fin de chapitre consiste a se
donner les moyens précis d’exprimer une telle relation.

Dans le méme esprit, les deux suites de termes généraux a, = n et b, = n + 1 sont aussi toutes
les deux divergentes mais on aimerait croire cette fois qu’elles divergent ”a la méme vitesse”, que la
constante 1 "n’a aucun poids a l'infini”.

Avec le langage que nous allons développer, nous montrerons en effet que (uy,)nen est négligeable
(a l'infini) devant (v, )nen et que (ap)nen et (bn)nen sont équivalentes.

Une des applications principales de ces notions de négligeabilité et d’équivalence concerne le calcul
de limite puisqu’elles nous permettent de repérer, dans une expression complexe, la partie qui est
responsable du comportement ”dominant” a l'infini.

4.1. Définitions.

Soit (tn)nen et (vn)nen deux suites, avec v, # 0 a partir d’un certain rang. On dit qu’au voisinage
de +o0 :

e (up)nen est négligeable devant (v, )nen, et on écrit u, = o (v,) lorsque lim %2 = 0.
+oo n—-+oo Un

On dit : 7 u, est un petit o de v,”.

e (up)nen est équivalente a (v, )pen, et on écrit u, ~ vy, lorsque lim %= =1.
+oo n—+oo Un

Remarque 4.1.1. *up = O (vn) si et seulement s’il existe une suite (g5,) tendant vers 0 telle
(o9}

que u, = €,V,. Dans certains textes, il s’agit en fait de la définition! Cette maniere d’écrire la
negligeabilité permet de se passer de I’hypothese v, # 0.

e Les seules suites équivalentes a 0 sont les suites qui sont nulles a partir d’'un certain rang.

e Dans cette définition de négligeabilité, rien n’empéche la suite (v,)pen de diverger vers —oo et
(un)nen de diverger vers +oo, de sorte que la suite négligeable peut en fait étre supérieure (a
partir d’un certain rang) a la suite dominante.

Ezemple 4.1.2. 2+27" ~ 2; w ~2cetn’+5m"4+5= o (ng).
+o0 n +oo ™ +o0
Ezercice 4.1.3. Soit (tn)nen €t (vn)nen deux suites convergentes vers des limites non nulles. A quelle
condition a-t-on u, ~ v,?
n—oo
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Ezercice 4.1.4. 1. Soit (up)nen une suite vérifiant, pour tout n € N,
nzgun<n2+n+1.
Déterminer la limite et un équivalent de u,,.

2. Soit (v )nen une suite vérifiant, pour tout n € N*,

1 < <1
IUn X —

Déterminer la limite de (nvy),, en déduire un équivalent de v, et sa limite.

Exercice type concours.
On note (E,,) 'équation

3
x
E,): ——=n.
(En) z2+1
1. Montrer que pour tout n € N, I’équation (F,,) posséde une unique solution notée x,,, sur

R.
Donner la valeur de wug.

2. Quelle est la monotonie de la suite (2, )nen ?
3. Montrer que pour tout n > 1,
n<xr, <n+l.

4. En déduire la limite de la suite (z,)pen et donner un équivalent.

Proposition : Caractérisation de I’équivalence.
Pour montrer que deux suites sont équivalentes, on peut montrer que leurs différence est négligeable
devant 'une ou l'autre des suites. Précisément, Soit (u,)nen €t (vn)nen deux suites. Alors les
conditions suivantes sont équivalentes.

o
e U, — v, = 0 (vy)
—+00
e U, —v, = 0 (uy)
—+o0
Démonstration. A compléter. O
Remarque 4.1.5. e Cela ne veut pas dire que u, — v, converge vers 0. Les suites u, = n et

vp = n + 1 forment un contre-exemple.
e Si les deux suites sont nulles & partir d’un certain rang (donc équivalentes), on écrit que
0= o (0)..

n—oo

ce qui est vrai.

4.2. Propriétés.

Proposition : Opérations sur les équivalents.
1. Produit : si u, ~ v, et r, ~ s, alors u,r, ~ v,Sn.
“+oo —+00 +oo

(En particulier, ¢’est vrai pour r, = sy).

2. Quotient : si u, ~ v, et r, ~ s, (supposées non nulles & partir d’'un certain rang),
+oo +oo
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3. Elévation a une puissance réelle : si u, ~ v, (avec suites positives a partir d’un
+oo

certain rang), alors, pour tout a € R, u& ~ v.
+o00

4. Valeur absolue : si u, ~ vy, alors |u,| ~ |v,].
—+o00 —+o0

Démonstration. A compléter. d

Proposition : Propriétés des relations o () et ~.
1. Transitivité : si u,, ~ v, et v, ~ w, alors u, ~ w,.
—+00 —+00 —+00
2. Terme dominant d’une somme : si u, = +0 (vn), alors u, + vy, o Up. (Dans une
o0 o

somme, on peut négliger les termes. .. négligeables!)

3. Passage a l'inverse : si u, = o (v,) et si les suites u, et v, sont non nulles & partir
+oo

) : N U 1
d’un certain rang, alors : &~ = +ooo (un)

Démonstration. A compléter. d

Remarque 4.2.1. Un cas particulier important du deuxieéme point de la proposition précédente affirme
que les polynomes sont équivalents a leur monome de plus haut degré. Soit en effet (p,), la suite
définie par

N-1

pn:aNnN+aN_1n + -4+ an + ag.

Alors, pour tout £ < N,

aknk = O (aNnN)
n—oo
. . k . —_— . ..
puisque lim %% — lim % pk~N = 0. En appliquant la proposition, on conclut que p, ~ ann”.
n—oo 4NT n—00 n—00

Avec le deuxieme point de la proposition 4.2, on en déduit un résultat analogue pour les fractions
rationnelles (i.e les quotients de polynémes) : elles sont équivalentes au quotient des monémes de plus
hauts degrés.

Proposition : Equivalents et limites.
On considere des suites non nulles a partir d’'un certain rang. On a alors :

1. up, = o (1) siet seulement si lim w, = 0.
+o0 n—00

2. Soit £ # 0. Alors uy, o ¢ si et seulement si lim “¢ = 1 si et seulement si lim u, = /.
(o.0)

n—00 n—oo

Démonstration. A compléter. O

Remarque 4.2.2. Les fautes de raisonnement arrivent tres vite avec les équivalents. Ce qu’il faut retenir
principalement de cette proposition est qu’on peut multiplier ou diviser des équivalents mais surtout
pas additionner (ou soustraire) les équivalents, ni les composer !

L4 Sl U =N 1 U = —Nn 1 On a U ~ 1, U ~ —n et u + v = 1 + 1 ~ 1 aIOI“S ue
n y Un n y Un n n q
+ po " 1oo

n+ (—n) = 0. En fait, le probleme n’est méme pas résolu si on considere uniquement des suites
non nulles a partir d’'un certain rang : en effet n 4+ 1 o n + 2 et d’autre part —n+~ —n. Si
o0 o
on ajoute ces deux équivalences, on obtient 1 o 2, ce qui, bien siir, est faux. Aucune de ces 6
oo
suites n’est nulle a partir d’un certain rang.
e Si u, ~ v, cela n’implique pas In(u,) ~ In(v,). Par exemple, si u, = 1 et v, = 1+ (en
+o0 +o0 n

utilisant le théoreme 4.5).
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e De méme, si u, ~ v, cela n'implique pas e"* ~ e’". Par exemple, si u, =n et v, =n+ 1.
+0o0 +oo

Ezercice 4.2.3. Montrer que e*» o e’ si et seulement si lim (u, — v,) = 0. En particulier, il est vrai
o0 n—o0

que si e* ~ eV, alors u, ~ v, ; c’est la réciproque qui est fausse.
+oo +oo

4.3. Applications.

Théoreme : Utilisation de la relation d’équivalence.
Si uy, o Up, alors les suites (up)nen et (v )nen sont de méme nature, c’est-a-dire :
o0

e (up)nen converge si, et seulement si, (vy,)nen converge et dans ce cas elles ont la méme
limite.

o (up)nen diverge vers +oo si, et seulement si, (v, )nen diverge vers +oo (idem pour —oo).

e (up)nen n'a pas de limite si, et seulement si, (v, )nen n'a pas de limite.

Démonstration. A compléter. O

Théoreme : Utilisation de la relation de négligeabilité.
Siu, = o (vy) et :
+o00
e si la suite (v, )nen tend vers 0, alors la suite (uy)nen tend vers 0.

e si lim |u,|=+ooalors lim |v,| = +o0.
n—+oo n—+oo

Démonstration. A compléter. a

4.4. Croissances comparées. Les théoremes de croissances comparées sont des résultats qui per-
mettent de lever des indéterminations.

Théoreme : Croissances comparées.

e "Le logarithme est négligeable devant les puissances” :

In(n) = 2 (n) | ou, plus généralement : Va > 0, V3 > 0, | (In(n))* = o (nf)

e ”Les puissances sont négligeables devant I’exponentielle” :

n= o (e")|ou, plus généralement : Voo > 0, V3 >0, | n® = o (65”)
“+00 “+oo

e "L’exponentielle est négligeable devant la factorielle” :

e"” = o (n!)|ou, plus généralement : Vg > 0,|¢" = o (n!)
+o0 +o0

Démonstration. 1l s’agit en principe d’une reformulation de résultats déja connus. g

Méthode : croissances comparées.
Quand la croissance comparée n’est pas directe, il faut revenir a une forme exponentielle pour
utiliser 'une des formules ci-dessus.

Exemple 4.4.1. Quelle est la limite de n? x 277 ?

4.5. Formes indéterminées.
Méthode : pour lever les indéterminations.
1. Formes indéterminées du type oo — oco.

Pour lever une telle indétermination, on cherche le terme de la somme qui est dominant
en +o0o, ce qui ramene la limite & trouver a celle d'une expression plus simple. On peut
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retenir que les polynomes sont équivalents en +oo a leur monoéme de plus haut de degré
(voir remarque 4.2.1).

00
2. Formes indéterminées du type —.
00

On cherche le terme dominant du numérateur et le terme dominant du dénominateur.
La limite a trouver se ramene a celle du quotient de ces deux termes dominants. On
peut retenir que les fractions rationnelles sont équivalentes en +oco au quotient de leurs
monomes de plus hauts degrés (en s’inspirant de la remarque 4.2.1).

3. Formes indéterminées du type %.

La démarche est identique : on ne retient du numérateur et du dénominateur que les
termes dominants. Attention cependant, dans ce cas, les termes dominants sont ceux qui
tendent le plus lentement vers 0.

Ezemple 4.5.1.

1. e —n? ~ e" car n? = o (e") par croissances comparées, donc :
+oo —+o00
lim e” —n?= lim e" = 4oo.
n—-+4o0o n—-+oo
e” —n? em
2. —  ~ — car n2 = o (e") par croissances comparées, et In(n)!® = o (3") par
croissances comparées, et on fait le quotient des équivalents. Ensuite :
. e — TL2 . el . e\n
Iim — = lim — = lim <7) =0
n—+oo 3" — In(n)1%  no+00 3" notoo \3
car —1 < g < 1.
3. itTT ~ -~ —In(n) car lim, ;00 27" = limy 400 (%)n =0donc 27" = o (1), et :
vn  In(n) 400 In(n) +o0 +0o0
In(n) = o n) par croissances comparées, donc = = o ( 1 ) et on fait le quotient des
(n) = 0 (vVn)p parées, = 0 mm ) q
équivalents. Ensuite :
. 14277 .
lim ——— = lim —In(n) = —oc.
n——+oo 1 1 n—+oo

Vi ()

On dispose d’équivalents particuliers pour lever des formes indéterminées spécifiques :

Proposition : Equivalents particuliers.

Soit ’ (tn)neN une suite de limite nulle ‘ Alors :

VaeR*, (1+up)*—1 ~ oau,
+oo

In(1 + up) 3 Un
(e.9]

e —1 ~ u,
—+o00

Démonstration. On verra la démonstration de ces résultats plus tard dans le cours, a ’aide de la formule
de Taylor. 0

Remarque 4.5.2. C’est faux si la suite (uy),en ne tend pas vers 0.
Par exemple : In(1 + n) n’est pas équivalent a n au voisinage de 400, car :

In(+n) In(n(+y) Inm) h+;) i 0
n n n "




CHAPITRE 1 15

1 In(1+1
en utilisant lim M = ( par croissances comparées et lim M = 0 puisque lim In (1 + %) =
0 n—oo n n—o00 n n—o0
On a donc : In(14+n) = o (n).
+oo
Exemple 4.5.3. Donner un équivalent puis la limite de :
1.z, =2"(V1+em—1).
2. yp = (n+1)In (ZH).
2
3. z, =n(en —1).
Ezercice 4.5.4.
1.n ~ n+l 3. In(n) ~ In(100000000n). 5. e ~ 2"
n—-+4oo n—-+oo n—-+o0o
2.7 ~ n?4n. 4. " ~ " Too00000. 6. In(n) ~ In(n+1).
n—-4oo n—-4o0o n—-4o0o

FEzxercice 4.5.5.

Up = —2n% + Tn + 3. Uy, = (%)n X /M.

Uy =N — % 3n242n—5n

1. 6.
2. — _ 3n?427-5"
7. up = In(n)—4n2+3"—8"
3 _ 3n%+42n-5
c Un = T4p2y3n-8- 8. up =+v2n+1++2n.
4. up = (1L.1)" = nP2 e 9. up, =2n+1—2n.
5. u, = (3)" — V/n. 10. u, =nln (1+ 2).
5. SUJETS D’ANNALES EN LIEN AVEC CE CHAPITRE.
Remarque 5.0.1. 1. Nous traiterons certains des sujets suivants en exercices, en travaux dirigés,

en colles ou en devoir. Pour les autres, il existe des corrigés que 'on trouve facilement sur
Internet. Ces corrigés sont parfois tres rapides, n’hésitez pas a venir m’en parler si vous pensez
qu’une question mérite des explications supplémentaires.

2. Les sujets de concours sont souvent pensés pour faire appel a plusieurs parties du programme.
Dans la liste qui suit figurent les exercices pour lequel il est nécessaire de connaitre les résultats
de ce chapitre. Mais parfois ce n’est pas suffisant car d’autres parties du cours sont aussi
impliquées. J’indique ces situations avec le symbole * si I’exercice ne peut étre traité avec les
connaissances de ce chapitre uniquement.

3. Cette liste n’est pas exhaustive.

1. ECRICOME
e 1995 Exercice 2.
e 1996 Exercice 1.
e 1999 Exercice 1 *.
e 2001 Exercice 2 *.
e 2003 Exercice 2.
e 2004 Exercice 1.
e 2005 Exercice 1 *.
e 2007 Exercice 1 *.
e 2008 Exercice 2 *.
e 2010 Exercice 2 *.



2012 Exercice 2 *.

2014 Exercice 2.

2015 Exercice 1 *.
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2020 Exercice 2 (la fin).

2021 Exercice 2 *.

2022 Exercice 2.

2023 (sujet 0) Exercice 2 et Exercice 3.
2. EDHEC

1997 Exercice 1.
2000 Exercice 3.
2002 Exercice 3.
2003 Exercice 3.
2004 Probleme *.
2008 Exercice 1.
2009 Exercice 1.
2012 Exercice 1.
2016 Exercice 2.

2017 Exercice 2 *.

2020 Probleme *.
2022 Exercice 3.

3. EML

2001 Exercice 2 *.

2002 Exercice 2.
2004 Exercice 1.

2005 Exercice 2 *.
2006 Exercice 2 *.
2007 Exercice 2 *.
2009 Exercice 1 *.

2010 Exercice 2 *
2011 Exercice 1 *

2016 Exercice 2 *.
2017 Exercice 1 *.
2018 Exercice 2 *.

2019 Exercice 3 (la suite n’est pas vraiment une suite récurrente).

(le début est faisable dés maintenant).

(le début est faisable dés maintenant).

2024 Exercice 1 derniere partie.
4. ESCP
e 1988 épreuve 111 Exercice 1 *.

e 1989 épreuve III Exercice 2.

e 1990 épreuve III Exercice 2.

e 1992 épreuve III Exercice 2.

16
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1994 épreuve I Exercice 1 (la suite n’est pas vraiment une suite récurrente, voir la derniere
partie de MO01).

1996 épreuve III Exercice 2.

e 1997 épreuve 111 Exercice 2.
e 1999 épreuve III Exercice 2.
e 2000 épreuve 111 Exercice 2 *.
5. ESC
e 2006 Exercice 2.
e 2007 Exercice 2.
e 2009 Exercice 2 *.
6. ESSEC
e 1986 épreuve II Partie I *.
e 1989 épreuve I Partie I *.
e 1989 épreuve II Partie IT * (tres peu).
e 1990 épreuve III Exercice 1 (suite récurrente d’ordre 3 mais sans algebre linéaire).

e 1993 épreuve II Partie I (suite récurrente d’ordre supérieur sans algebre linéaire ; d’ailleurs
la suite est affine).
e 1995 épreuve I Exercice 2. 1997 épreuve III Probleme 2 *.

e 2000 épreuve III Exercice 2 * (les fonctions trigonométriques qui apparaissent dans cet
exercice sont maintenant hors programme).

e 2002 épreuve II Partie I, Partie II et Partie 111 *.

7. HEC Les sujets récents sont tres marqués par les probabilités et (plus épisodiquement) I’algebre
linéaire. Si certaines suites numériques apparaissent de temps en temps, leurs études ne consti-
tuent jamais le but d’un probleme.

Remarque 5.0.2. Les suites récurrentes linéaires d’ordre supérieur (définie par exemple par ses premiers
termes et par unpt+2 = up+1 + 2u, seront étudiées dans le cours sur les applications linéaires.
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